Vniver§itat d València

Singularities of frontal surfaces

C. Muñoz-Cabello

July 2022

Overview

1. Introduction

- 2. Frontal equivalence
- 3. Double point space of a frontal surface

Introduction

Introduction What is a frontal hypersurface?

(Heiner Otterstedt, 2006) (Patrick Dirden, 2010)

- Light cardioids
- Control systems
- Sound barrier
- Hyugens' diffraction principle

Introduction Ishikawa's theory of infinitesimal Legendre equivalence

- Corank 1 stable frontals come from a certain family of maps, called open Whitney umbrellas
- ► Stability is codified in terms of a certain C-algebra Q
- Legendrian codimension measures how far a frontal is from being stable

Introduction He is Mr Smart!

(Image by Goo Ishikawa, year unknown)

Frontal equivalence

Frontal equivalence The flag always stays upright!

(the second seco

We say $f: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ is **frontal** if there exists a $\nu: (\mathbb{C}^{n+1}, 0) \to T^* \mathbb{C}^{n+1}$ such that $0 \notin \nu[f(S)]$ and

$$u(df\circ\xi)=0\quad \forall \xi\in heta_n$$

Proposition

Let $f, g: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ be \mathscr{A} -equivalent germs. If f is frontal, g is frontal.

Frontal equivalence Frontal stability

► An unfolding *F* of *f* is **frontal** if it has a frontal representative. The map *f* is *F***-stable** if every frontal unfolding is trivial.

Consider the vector space

$$\mathscr{F}(f) = \left\{ \left. \frac{df_t}{dt} \right|_{t=0} : (f_t, t) \text{ frontal }, f_0 = f \right\} \supseteq T \mathscr{A}_e f$$

► We say *f* is *F*-finite if

$$\operatorname{codim}_{\mathscr{F}} f = \dim_{\mathbb{C}} \frac{\mathscr{F}(f)}{T \mathscr{A}_{e} f} < \infty$$

Frontal equivalence Characterising frontal stability

Result

A corank 1 frontal surface is stable as a frontal if and only if it has frontal codimension 0.

Result

A corank 1 frontal surface f is \mathscr{F} -finite if and only if there is a finite representative $f: X \to Y$ such that $f: X \setminus f^{-1}(0) \to Y \setminus \{0\}$ is locally \mathscr{F} -stable.

Frontal equivalence Mond's classification of simple fold surfaces in \mathbb{C}^3

Mond's classification	Frontalised surface	Codimension	Notes
$S_k y^3 + x^{k+1}y$	$\check{S}_k y^5 + x^{k+1}y^3$	k	
$B_k x^2y + y^{2k+1}$	$\check{B}_k x^2 y^3 + y^{2k+3}$	k	$k \ge 2$
$C_k xy^3 + x^k y$	$\check{C}_k xy^5 + x^k y^3$	k	$k \ge 3$
$F_4 y^5 + x^3 y$	$\check{F}_4 y^7 + x^3 y^3$	4	
$(x, y^2, yp(x, y^2))$	$(x,y^2,y^3p(x,y^2))$	(Mond, 1985)	$p \in \mathscr{O}_2$

Frontal equivalence Mond's fold surfaces and their frontalisations

Frontal equivalence Properties of frontal surfaces

- Topological invariants:
 - ▶ The only frontal fold surface that is a wave front is the cuspidal edge.
 - The \mathscr{A} -codimension of f is equal to the \mathscr{F} -codimension of \check{f} (incl. ∞).
- Double point space:
 - Frontalising a fold surface introduces cuspidal edges.
 - Transverse double points are preserved.
- ▶ We can define an *extended Gaussian curvature* on frontal folds (see Saji, Umehara, and Yamada, 2009).

Frontal equivalence Stability only depends on the branches

Given a frontal monogerm $f \colon (\mathbb{K}^n, \mathsf{0}) o (\mathbb{K}^{n+1})$, let

$$\tau_{\mathscr{F}}(f) = (\omega f)^{-1} [\mathcal{TK}_e f \cap \mathscr{F}(f)]|_{x=0}$$

Result

Let $S = \{x_1, ..., x_r\}$. A frontal multi-germ $f : (\mathbb{K}^n, S) \to (\mathbb{K}^{n+1}, 0)$ is \mathscr{F} -stable as a frontal if and only if its branches,

$$f_i\colon (\mathbb{K}^n, x_i) \longrightarrow (\mathbb{K}^{n+1}, 0),$$

are \mathscr{F} -stable and the sets $\tau_{\mathscr{F}}(f_1), \ldots, \tau_{\mathscr{F}}(f_s)$ meet in gneneral position.

Conjecture

The set $\tau_{\mathscr{F}}(f)$ is the tangent space to the isosingular locus of f.

Frontal equivalence Frontal reduction in corank 1

Wavefronts can be obtained as discriminants of maps

 $F:(\mathbb{K}^{n+1},0)\to(\mathbb{K}^{n+1},0)$

with smooth critical set (Arnol'd, 1990).

Frontals can be generated unfolding analytic plane curves and applying a *frontal* condition to their parameters:

$$(t^3, t^4) \xrightarrow{\text{versal}} (t^3 + ut, t^4 + v_1t + v_2t^2) \xrightarrow{\text{frontal}} (t^3 + 2wt, t^4 + 3wt^2)$$

Frontal equivalence Frontal reduction in corank 1

Given an unfolding $\Gamma(u, t) = (u, \gamma_u(t))$ of an analytic plane curve $\gamma \colon (\mathbb{K}, 0) \to (\mathbb{K}^2, 0)$, the pull-back of Γ by $h \colon (\mathbb{K}^r, 0) \to (\mathbb{K}^s, 0)$ is defined as

 $(h^*\Gamma)(v,t) = (v,\gamma_{h(v)}(t))$

Result

If Γ is miniversal, there exists a graph-type immersion h such that $h^*\Gamma$ is miniversal as a frontal.

Frontal equivalence Consequences of this construction

Result

The frontal codimensilon of γ is equal to

 $\operatorname{codim}_{\mathscr{A}_{\mathrm{e}}}\gamma-\operatorname{mult}\gamma+\mathbf{1}$

Result

.

Any corank 1 frontal hypersurface with isolated instability admits a stable frontal unfolding.

Double point space of a frontal surface

Double point space of a frontal surface Double points split into two branches

If f(x, y) = (x, p(x, y), q(x, y)), the **double point space** of f is given by

$$D^{2}(f) = \left\{ (x, y, y') \in \mathbb{C}^{3} \colon \frac{p(x, y) - p(x, y')}{y - y'} = \frac{q(x, y) - q(x, y')}{y - y'} = 0 \right\}$$

If $\pi(x, y, y') = (x, y)$, we set the complex space $D(f) = \pi(D^2(f))$ with the complex space structure induced by π .

Double point space of a frontal surface The six *F*-stable frontal surfaces

Result (cf. Marar and Tari, 1996)

If $p_y|q_y$, the generating function for D(f) has the form $\lambda(x, y) = p_y^2(x, y)\tau(x, y)$.

Corollary

Let $\lambda \in \mathscr{O}_2$ be the generating function for D(f), and $\mu = q_y/p_y$:

1. if λ/p_y is regular, f is either a cuspidal edge or a curve of transverse double points;

2. if $V(p_y, \mu_y) = \{0\}$, *f* is \mathscr{F} -finite if and only if λ/p_y has an isolated singularity at 0.

Double point space of a frontal surface Frontal disentanglement

A smooth family (f_t) is an \mathscr{F} -stabilisation of a frontal $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ if the 1-parameter unfolding $F = (f_t, t)$ is frontal and f_t is frontal stable for $t \neq 0$.

Lemma-Definition

If *f* has an isolated instability, then it admits an \mathscr{F} -stabilisation (f_t) and we call $\Delta_{\mathscr{F}}(f) = \operatorname{Im} f_t$ ($t \neq 0$) the **frontal disentanglement** of *f*.

Lê Dũng (1987), Siersma (1991)

If f has an isolated instability, $\Delta_{\mathscr{F}}(f)$ has the homotopy type of a wedge of spheres.

Double point space of a frontal surface Frontal Marar-Mond formulas

Theorem (frontal Marar-Mond formulas)

Given a corank 1 frontal $f \colon (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ with isolated instability,

$$\mu(f(C), 0) = 2S + \mu(C, 0);$$

 $2\mu(f(D_+), 0) = 2K + 2T + \mu(D_+, 0) - W - S + 1$

- C: Cuspidal edge curve
- S: Swallowtails
- ► *K*: Cuspidal double points

- ► *D*₊: Transverse double point curve
- ► *T*: Triple points
- ► *W*: Folded Whitney umbrellas

Double point space of a frontal surface Counting the invariants

Given a corank 1 frontal $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ with isolated instability,

$$\dim_{\mathbb{C}} \frac{\mathscr{O}_2}{(p_y, p_{yy})} = S; \qquad \qquad \dim_{\mathbb{C}} \frac{\mathscr{O}_2}{(p_y, \tau)} = 2S + K + W;$$
$$\dim_{\mathbb{C}} \frac{\mathscr{O}_3}{(p_y, \alpha, \alpha')} = 2S + K; \qquad \qquad \dim_{\mathbb{C}} \frac{\mathscr{O}_3}{\mathscr{F}_2(f)} = T + S + K.$$

These identities have been compiled into a Singular library, frontals.lib, which can be found at cuspidalcoffee.github.io.

Double point space of a frontal surface Frontal Milnor number

Given an analytic plane curve $\gamma \colon (\mathbb{C}, 0) \to (\mathbb{C}^2, 0)$ with $\kappa = |\Sigma(\gamma)| < \infty$,

 $\mu_{\mathscr{F}}(\gamma) = \mu_{\mathsf{I}}(\gamma) - \kappa$

Theorem

Given a corank 1 frontal $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ with isolated instability,

 $\mu_{\mathscr{F}}(f) = \mu(f(D_+), 0) - S - W + T + 1$

Double point space of a frontal surface Mond's conjecture

Recall that Mond defines the **image Milnor number** μ_l of $f : (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ as the number of spheres in a disentanglement.

Mond's conjecture

If f is \mathscr{A} -finite, $\mu_l(f) \geq \operatorname{codim}_{\mathscr{A}_e}(f)$, with equality if and only if f is quasihomogeneous.

Proposed frontal conjecture

Let $f: (\mathbb{C}^2, S) \to (\mathbb{C}^3, 0)$ be an \mathscr{F} -finite frontal map. Then $\mu_{\mathscr{F}}(f) \ge \operatorname{codim}_{\mathscr{F}_e}(f)$, with equality if and only if f is quasihomogeneous.

Muito obrigado!

Alguma pregunta?

Referencias I

