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Introduction



Caustics and wave fronts

(Heiner Otterstedt, 2006)
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From wave fronts to frontals

Wave front:

L PT ∗Kn+1

Kn+1

f

Frontal:

Kn PT ∗Kn+1

Kn+1

F

f
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Equidistant hypersurfaces

Let f : U ⊂ Rn → Rn+1 be an immersion, Z = f (U) and ξ : U → Rn+1 a

unit vector field along f . The equidistant hypersurfaces to Z are

defined as the hypersurfaces Zt given by

ft(x) = f (x) + tξ(x); x ∈ U, t ∈ R
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Legendre equivalence



Legendrian fibrations

Let h : PT ∗Kn+1 → Kn+1 be the canonical projection onto the base

space. A submersion π : PT ∗Kn+1 → Kn+1 is a Legendrian fibration if,

given p = (q, [ω]) ∈ PT ∗Kn+1,

ker dπp ⊆ ker(ω ◦ dhp)

An integral mapping is a smooth map F : U ⊂ Kn → PT ∗Kn+1 such

that, for all x ∈ U

Im dFx ⊆ ker(ω ◦ dhF (x))

where F (x) = (q, [ω]).
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Legendre equivalence

Two pairs (F , π), (G , π′) are Legendrian equivalent if we can find

diffeomorphisms φ, ψ and a contactomorphism Ψ such that the squares

in the following diagram commute:

(Kn, 0) PT ∗Kn+1 Kn+1

(Kn, 0) PT ∗Kn+1 Kn+1

F

φ

π

Ψ ψ

G π′

Theorem

In the above diagram, Ψ is locally determined by π, π′ and ψ.
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Stability of integral mappings

An integral deformation of F : (Kn, 0)→ PT ∗Kn+1 is a family of

integral maps (Fu) that depends smoothly on u ∈ (Kd , 0) such that

F0 = F .

We say a pair (F , π) is Legendre stable if, for each integral deformation

(Fu), we can find (φu), (ψu) and (Ψu) such that

Ψu ◦ F ◦ φ−1 = Fu; π ◦Ψu = ψu ◦ π
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Mind the second square

Not Legendrian equivalent,
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Mind the second square

(x , y3 + 3xy , y4 + 2xy2)

L : (x , y , 0, 0, 0)

(x , y2, y3)

π

π′

Not Legendrian equivalent, but they come from the same immersion.
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Open Whitney umbrellas

G. Ishikawa performed an extensive analysis of the notion of Legendrian

stability in his 2005 article. Some of his findings include:

• Integral deformations can be constructed using a differential form α̃,

called Nash lift.

• A pair (π,F ) is Legendrian stable if and only if F is an open

Whitney umbrella and the algebra

Q(F ) =
F ∗OPT∗Kn+1

(π ◦ F )∗mn+1F ∗OPT∗Kn+1

is generated by a certain family of functions.

• Open Whitney umbrellas are classified by their type.
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Frontal equivalence



Frontal germs

A germ f : (Kn,S)→ (Kn+1, 0) is frontal if there exist a representative

f : U → V such that f (U) has a well-defined tangent space Tf (u)f (U) for

all u ∈ U.

Taking coordinates (x1, . . . , xn, y) on Kn+1, f is a frontal germ if and

only if

d(y ◦ f ) =
n∑

j=1

pj d(xj ◦ f )

for some p1, . . . , pn : (Kn, 0)→ K.

A Nash lifting of f is an integral

f : (Kn, 0)→ PT ∗Kn+1 ≡ Kn+1 ×Kn given by

f (u) = (f (u); p1(u), . . . , pn(u))
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Examples

• Every analytic plane curve is frontal.

• Let f : (K2, 0)→ (K3, 0) be the germ

f (x , y) = (x , y2, xy)

If f is frontal, there must exist a unit vector field ξ such that

〈fx(x , y), ξ〉 = 〈fy (x , y), ξ〉 = 0

These equations are equivalent to

ξ1 + yξ3 = 0; 2yξ2 + xξ3 = 0

but no unit vector field verifies these equations.
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Frontal maps are preserved under A -equivalence

Proposition

Let f , g : (Kn,S)→ (Kn+1, 0). If f is frontal and g is A -equivalent to

f , then g is a frontal.

(Kn,S) (Kn+1, 0)

(Kn,S) (Kn+1, 0)

f

φ ψ

g
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Frontal stability

A frontal unfolding of f is a germ

Fd : (Kn ×Kd ,S × {0})→ (Kn+1 ×Kd , 0)

such that

1. for all x ∈ (Kn,S), Fd(x , 0) = (f (x), 0);

2. Fd is frontal as a germ.

A frontal unfolding is trivial if it is A -equivalent to f × id(Kd ,0) for some

d . If every frontal unfolding of f is trivial, we say f is stable as a frontal.
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The stable frontal surfaces
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Characterizing frontal stability (i)

Definition

Given a frontal f with Nash lifting f , we set

F (f ) =

{
dfs
ds

∣∣∣∣
s=0

: (fs , s) frontal

}
;

TAe f =

{
dfs
ds

∣∣∣∣
s=0

: fs = ψs ◦ f ◦ φ−1
s

}

We define the frontal codimension of f as

codimFe f = dimK
F (f )

TAe f

Proposition

Let f be a corank 1 frontal germ. If f is generically immersive, f is

stable as a frontal if and only if it has frontal codimension 0.
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Classifying stable frontals by their local algebras

We denote On the ring of smooth germs (Kn, 0)→ K. Given a mapping

f : (Kn, 0)→ (Kp, 0), f ∗m ⊆ On denotes the ring generated by the

component functions of f . We set

Q(f ) =
On

f
∗
m

; QI (f ) =
f
∗
O2n+1

(f ∗m)f
∗
O2n+1

(Ishikawa, 2005)

Conjecture

Two stable frontal germs f , g : (Kn, 0)→ (Kn+1, 0) are A -equivalent if

and only if Q(f ) ∼= Q(g) and QI (f ) ∼= QI (g).
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Characterizing frontal stability (ii)

We define

τ̂(fi ) = ωf −1
i [tfi (θn) + (f ∗i m)F (fi )]|0

where |0 denotes evaluation at 0.

Proposition

Let f be a frontal multi-germ with branches f1, . . . , fr . Then f is stable

as a frontal if and only if f1, . . . , fr are stable and τ̂(f1), . . . , τ̂(fr ) meet

in general position.

Conjecture

The space tf (θn) + (f ∗m)F (f ) is the equivalent in frontal equivalence

to the K -tangent space in Mather’s theory of A -equivalence.
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Frontal Mather-Gaffney criterion

Proposition

Let f : (Cn,S)→ (Cn+1, 0) be a corank 1 frontal mapping. If f is finite

and codimV (py , λy ) > 1, it has finite frontal codimension if and only if

there is a small enough representative f : X → Y such that:

1. f −1(0) = S ;

2. the restriction f : X\f −1(0)→ Y \{0} is locally stable as a frontal.
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Double point curve of a frontal

surface



The double point curve

Let f : (C2, 0)→ (C3, 0) be a parametrized surface of corank 1. If

f (x , y) = (x , p(x , y), q(x , y))

the double point space of f is given by

D2(f ) =

{
(x , y , y ′) ∈ C3 :

p(x , y)− p(x , y ′)

y − y ′
=

q(x , y)− q(x , y ′)

y − y ′
= 0

}

If π : C3 → C2 is the proyection given by (x , y , y ′) 7→ (x , y), we shall

write D(f ) = π(D2(f )). The curve D2(f ) induces an algebraic structure

on D(f ) by taking the Fitting ideals of π.
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Double point curve of a frontal surface

Let f : (C2, 0)→ (C3, 0) be a frontal germ of corank 1 and λ be the

generating function of D(f ). If f (x , y) = (x , p(x , y), q(x , y)), either

py |qy or qy |py (Nuño-Ballesteros, 2015).

Proposition

1. If py |qy , p2
y |λ.

2. If λ/py is regular, f is either a cuspidal edge or a curve of

transversal double points.

3. The germ f is stable as a frontal if and only if λ/py has an isolated

singularity at 0.
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Double point curve and frontal stability

f (x , y) = (x , y3 + 3xy , y4 + 2xy2)

• Space of double points:

λ(x , y) = (x + y2)2(3x + y2)

• Cuspidal edge set:

py (x , y) = x + y2

• Double point set:

τ(x , y) = 3x + y2
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Open questions



Open questions

• Can we compute the module F (f ) on Singular?

• The corank 1 condition is a limitation imposed by Ishikawa (2005).

Does any of these results hold in corank 2?

• In Mather’s theory, a germ is finitely A -determined if and only if it

has finite A -codimension. Does this hold for frontals?

• Marar-Mond number for frontal surfaces.
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